Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily

نویسندگان

  • Oliver Daumke
  • Gerrit J. K. Praefcke
چکیده

Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for conformational switching and GTP loading of the large G protein atlastin.

Atlastin, a member of the dynamin superfamily, is known to catalyse homotypic membrane fusion in the smooth endoplasmic reticulum (ER). Recent studies of atlastin have elucidated key features about its structure and function; however, several mechanistic details, including the catalytic mechanism and GTP hydrolysis-driven conformational changes, are yet to be determined. Here, we present the cr...

متن کامل

Building a fission machine--structural insights into dynamin assembly and activation.

Dynamin is a large multidomain GTPase that assembles into helical arrays around the necks of deeply invaginated clathrin-coated pits and catalyzes membrane fission during the final stages of endocytosis. Although it is well established that the function of dynamin in vivo depends on its oligomerization and its capacity for efficient GTP hydrolysis, the molecular mechanisms governing these activ...

متن کامل

Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane.

The GTPase dynamin is a mechanochemical enzyme involved in membrane fission, but the molecular nature of its membrane interactions and their regulation by guanine nucleotides and protein effectors remain poorly characterized. Using site-directed fluorescence labeling and several independent fluorescence spectroscopic techniques, we have developed robust assays for the detection and real-time mo...

متن کامل

Dynamin: switch or pinchase?

What is it? Dynamin is a protein that is essential for severing nascent endocytic pits from the plasma membrane to form vesicles. According to whom you speak, dynamin is either a molecular 'switch', or a pinchase-like mechanoenzyme. What is a switch and what is a mechanoenzyme? Small GTPases of the Ras superfamily are often thought of as switches that control cellular events. These enzymes, whe...

متن کامل

Conformational dynamics of dynamin-like MxA revealed by single-molecule FRET

Human myxovirus resistance protein 1 (MxA) restricts a wide range of viruses and is closely related to the membrane-remodelling GTPase dynamin. The functions of MxA rely on domain rearrangements coupled with GTP hydrolysis cycles. To gain insight into this process, we studied real-time domain dynamics of MxA by single-molecule fluorescence resonance energy transfer. We find that the GTPase doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2016